CLASS X SAMPLE PAPER MATHS

Max.Marks: 80
Note: (i) This question paper consists of 40 questions divided into 4 sections $A, B, C \& D$.
(ii) Questions in Section A carry 1 mark each, Section B carry 2 marks each, Section C carry 3 marks each and Section D carry 4 marks each.
(iii) There is no overall choice. However, internal choices are provided in 2 questions of Section A, 2 questions of Section B, 3 questions of Section C and 3 questions of Section D.
(iv) Use of calculators prohibited.

Section-A

1. Decimal representation of $\frac{47}{4000}$ terminates after \qquad digits.
a) 2
b) 3
c) 4
d) 5
2. Square of a positive integer is always of the form \qquad
a) 3 m
b) 3 m or $3 \mathrm{~m}+1$
c) $3 m+1$
d) $3 m$ or $3 m+2$
3. If $\frac{5}{2}$ is a zero of the polynomial $4 x^{2}-4 x-k$, then value of ' k ' is \qquad
a) 3
b) 15
c) -15
d) 5
4. The co-ordinates of the midpoint of the line joining points $(4,-5)$ and $(-6,3)$ are__
a) $(5,4)$
b) $(-5,-4)$
c) $(-1,-1)$
d) $(1,1)$
5. The distance between the points $(\cos \theta, \sin \theta)$ and $(\sin \theta,-\cos \theta)$ is \qquad
a) $\sqrt{ } 3$
b) V 2
c) 2
d) 1
6. If the distance between the points $(4, p)$ and $(1,0)$ is 5 units, then ' p ' is \qquad
a) ± 4
b) 4
c) -4
d) 0
7. If $4 \tan \theta=3$, value of $\frac{4 \sin \theta+3 \cos \theta}{4 \sin \theta-2 \cos \theta}$ is \qquad
a) $5 / 3$
b) 6
c) -6
d) Not defined.
8. If $A+B=90^{\circ}$ and $\cos B=3 / 5$, then $\sin A$ is \qquad
a) $3 / 5$
b) $4 / 5$
c) 1
d) none of these.
9. If 5θ and 4θ are acute angles and $\sin 5 \theta=\cos 4 \theta$, then $2 \sin 3 \theta-\sqrt{ } 3 \tan 3 \theta$ is \qquad
a) 1
b) -1
c) 0
d) $1+\sqrt{ } 3$
10. Twenty cards are numbered $1-20$. One card is picked at random. The probability of crd bearing a prime number is \qquad
a) $2 / 5$
b) $3 / 5$
c) $1 / 4$
d) $7 / 20$

Questions (11-15) fill in the blanks:

11. The discriminant of the equation $\sqrt{ } 3 x^{2}+2 \sqrt{ } 2 x-2 \sqrt{ } 3=0$ is \qquad
12. Radius of a circle is do-ubled. Then the percent increase in its area is \qquad
13. Formula for finding Mode is \qquad OR Formula for finding Median is \qquad
14. A circle is inscribed in a quadrilateral $A B C D$. Then $A B+D C=$ \qquad
15. Given $2 x+3 y=7$, An equation that would make the system of equations inconsistent is_

Questions(16-20) Short answer questions.
16. If H.C.F of 45 and 63 can be expressed as $45 m-63 \times 2$, then find ' m '.

OR

Find the largest number that divides 126,144 and 198 completely.
17. For what value of ' k ' the system of equations $2 x+3 y=5 ; 4 x-k y=10$ will have infinitely many solutions.
18. For what value of ' k ' the equation $x^{2}-8 x+k=0$ will have equal roots?
19. A tangent is drawn to a circle from a point 10 cm away from the centre is inclined at 30° to the line joining the point with the centre. Find the length of the tangent.
20. In $\triangle A B C, D E \| B C$. If $A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$ find the length of $E C$.

Section-B

21. Draw a line segment $A B=6 \mathrm{~cm}$ and divide it in the ratio $3: 2$.

OR
Draw a circle of radius 2 cm and construct a tangent to it from a point on the circle.
22. Find the zeroes of the polynomial $4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{ } 3$ and verify the relationship with the coefficients.

OR
If the squared difference between the zeroes of the polynomial $x^{2}+p x+45$ is 144 find the value of ' p '.
23. Evaluate: $\frac{2}{3}\left(\cos ^{4} \theta-\sin ^{4} \theta\right)-3\left(\sin ^{2} 60^{\circ}-\sec ^{2} 45^{\circ}\right)+\frac{1}{4} \cot ^{2} 30^{\circ}$
24. $A O B$ is the diameter of a circle with centre ' O '. AC and $B C$ are two chords measuring 3 cm and 4 cm respectively. Find the area of the minor segments formed by chords $A C$ and $B C .(\pi=3.14)$
25. Find the mean of the following data by Direct method.

Class Int	$0-10$	$10-20$	$20-30$	$30-40$
Frequency	7	10	15	8

26. Two dice were tossed together. Find the probability of (i) both showing same score and (ii) sum of the scores is less than 6.

Section-C

27. Prove that $\sqrt{ } 3$ is irrational.

OR
Show that only one of ' $n, n+1, n+2$ ' is divisible by 3 .
28. For what value of ' a ' and ' b ' the following system of equations will have infinitely many solutions. $2 x-(2 a+5) y=5 ;(2 b+1) x-9 y=15$.
29. A lending library has fixed charge for the first three days and an additional charge thereafter. Savita pays ₹ 27 for a book kept for 7 days while Shriya paid ₹ 21 for a book kept for 5 days. Find the fixed charge and charge for extra day.
30. If the co-ordinates of the midpoints of a triangle are $(1,2),(0,-1)$ and $(2,-1)$ find the co-ordinates of the vertices of the triangle.

OR
The vertices of a $\triangle A B C$ are $A(-2,1), B(5,4)$ and $C(2,-3)$. Find the area of the triangle and the length of the altitude through A.
31. A circle is inscribed in a quadrilateral ABCD. Prove that the opposites sides subtend supplementary angles at the centre.
32. Two poles of height ' a ' and ' b ' meters are ' p ' meters apart. Prove that the height of the intersection of lines joining the top of one pole with the foot of the other is given by $\frac{a b}{a+b} \mathrm{~m}$.
33. Prove : $\frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}$ OR $\frac{\boldsymbol{\operatorname { t a n }}^{3} \boldsymbol{\theta}}{1+\boldsymbol{\operatorname { t a n }}^{2} \boldsymbol{\theta}}+\frac{\boldsymbol{\operatorname { c o t }}^{3} \boldsymbol{\theta}}{1+\boldsymbol{\operatorname { c o t }}^{2} \boldsymbol{\theta}}=\boldsymbol{\operatorname { s e c } \boldsymbol { \theta } \boldsymbol { \operatorname { c o s e c } } \boldsymbol { \theta } - 2 \boldsymbol { \operatorname { s i n } } \boldsymbol { \theta } \boldsymbol { \operatorname { c o s } } \boldsymbol { \theta }}$
34. $\triangle A B C$ is right angled at B. With $A C$ as diameter a semicircle is drawn and with $B C$ as radius a quadrant is drawn. If $A C=5 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$ find the area of the region between the semicircle and quadrant. $(\pi=3.14)$

Section-D

35. Raju travels 600 km to his home partly by train and partly by car. If he travels 300 km by train and rest by car he would reach in 6 hours and 45 minutes, but if he travels 320 km by car rest by train he would take 3 minutes longer. Find the speeds of car and train.

OR
There are 20 coconut saplings planted in a row 10 m apart from each other. A gardener has to water these saplings one by one by fetching water from a well which is located 10 m away from first sapling. Find the distance covered in watering all plants and the time taken to complete the job if the speed of the gardener is $10 \mathrm{~m} /$ minute.
36. Find all zeroes of the polynomial $2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ if two of the zeroes are $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$
37. If $\sin \theta-\cos \theta=\sqrt{ } 2 \cos \theta$ prove that $\sin \theta+\cos \theta=\sqrt{ } 2 \sin \theta$ OR
Angle of elevation of a jet flying horizontally at height of 3000 m was found to be 45°. After a flight of ten seconds the angle of elevation changes to 60°. Find the speed of the jet. (V3 = 1.732)
38. A cone of height 40 cm is cut horizontally by a plane parallel to the base. If the volume of the smaller cone so formed is $1 / 64$ of the original cone find at what height the section has been made.

OR

A solid is in the form of a cylinder with hemispherical ends. If the total height of the solid is 19 cm and diameter of the cylinder is 7 cm find the volume and total surface area.
39. $\triangle A B C$ is right angled at B and D and E are points on $B C$ such that $B D=D E=E C$. Then prove that $8 A E^{2}=5 A D^{2}+3 A C^{2}$.
40. If the median of the following data is 32.5 find the missing frequencies.

Class Int	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	Total
Freq	x	5	9	12	y	3	2	40

